P. D. E. 'S which imply the penrose conjecture

Journal Article (Journal Article)

In this paper, we show how to reduce the Penrose conjecture to the known Riemannian Penrose inequality case whenever certain geometrically motivated systems of equations can be solved. Whether or not these special systems of equations have general existence theories is therefore an important open problem. The key tool in our method is the derivation of a new identity which we call the generalized Schoen-Yau identity, which is of independent interest. Using a generalized Jang equation, we use this identity to propose canonical embeddings of Cauchy data into corresponding static spacetimes. In addition, we discuss the Carrasco-Mars counterexample to the Penrose conjecture for generalized apparent horizons (added since the first version of this paper was posted on the arXiv) and instead conjecture the Penrose inequality for time-independent apparent horizons, which we define. © 2011 International Press.

Full Text

Duke Authors

Cited Authors

  • Bray, HL; Khuri, MA

Published Date

  • January 1, 2011

Published In

Volume / Issue

  • 15 / 4

Start / End Page

  • 557 - 610

Electronic International Standard Serial Number (EISSN)

  • 1945-0036

International Standard Serial Number (ISSN)

  • 1093-6106

Digital Object Identifier (DOI)

  • 10.4310/AJM.2011.v15.n4.a5

Citation Source

  • Scopus