The conformations of the manganese transport regulator of Bacillus subtilis in its metal-free state.

Published

Journal Article

The manganese transport regulator (MntR) from Bacillus subtilis binds cognate DNA sequences in response to elevated manganese concentrations. MntR functions as a homodimer that binds two manganese ions per subunit. Metal binding takes place at the interface of the two domains that comprise each MntR subunit: an N-terminal DNA-binding domain and a C-terminal dimerization domain. In order to elucidate the link between metal binding and activation, a crystallographic study of MntR in its metal-free state has been undertaken. Here we describe the structures of the native protein and a selenomethionine-containing variant, solved to 2.8 A. The two structures contain five crystallographically unique subunits of MntR, providing diverse views of the metal-free protein. In apo-MntR, as in the manganese complex, the dimer is formed by dyad-related C-terminal domains that provide a conserved structural core. Similarly, each DNA-binding domain largely retains the folded conformation found in metal bound forms of MntR. However, compared to metal-activated MntR, the DNA-binding domains move substantially with respect to the dimer interface in apo-MntR. Overlays of multiple apo-MntR structures indicate that there is a greater range of positioning allowed between N and C-terminal domains in the metal-free state and that the DNA-binding domains of the dimer are farther apart than in the activated complex. To further investigate the conformation of the DNA-binding domain of apo-MntR, a site-directed spin labeling experiment was performed on a mutant of MntR containing cysteine at residue 6. Consistent with the crystallographic results, EPR spectra of the spin-labeled mutant indicate that tertiary structure is conserved in the presence or absence of bound metals, though slightly greater flexibility is present in inactive forms of MntR.

Full Text

Duke Authors

Cited Authors

  • DeWitt, MA; Kliegman, JI; Helmann, JD; Brennan, RG; Farrens, DL; Glasfeld, A

Published Date

  • February 2, 2007

Published In

Volume / Issue

  • 365 / 5

Start / End Page

  • 1257 - 1265

PubMed ID

  • 17118401

Pubmed Central ID

  • 17118401

International Standard Serial Number (ISSN)

  • 0022-2836

Digital Object Identifier (DOI)

  • 10.1016/j.jmb.2006.10.080

Language

  • eng

Conference Location

  • England