Coordinating complementary waveforms for sidelobe suppression
Published
Journal Article
We present a general method for constructing radar transmit pulse trains and receive filters for which the radar point-spread function in delay and Doppler, given by the cross-ambiguity function of the transmit pulse train and the pulse train used in the receive filter, is essentially free of range sidelobes inside a Doppler interval around the zero-Doppler axis. The transmit pulse train is constructed by coordinating the transmission of a pair of Golay complementary waveforms across time according to zeros and ones in a binary sequence P. The pulse train used to filter the received signal is constructed in a similar way, in terms of sequencing the Golay waveforms, but each waveform in the pulse train is weighted by an element from another sequence Q. We show that a spectrum jointly determined by P and Q sequences controls the size of the range sidelobes of the cross-ambiguity function and by properly choosing P and Q we can clear out the range sidelobes inside a Doppler interval around the zero-Doppler axis. The joint design of P and Q enables a tradeoff between the order of the spectral null for range sidelobe suppression and the signal-to-noise ratio at the receiver output. We establish this trade-off and derive a necessary and sufficient condition for the construction of P and Q sequences that produce a null of a desired order. © 2011 IEEE.
Full Text
Duke Authors
Cited Authors
- Dang, W; Pezeshki, A; Howard, S; Moran, W; Calderbank, R
Published Date
- December 1, 2011
Published In
Start / End Page
- 2096 - 2100
International Standard Serial Number (ISSN)
- 1058-6393
Digital Object Identifier (DOI)
- 10.1109/ACSSC.2011.6190398
Citation Source
- Scopus