Logistic Stick-Breaking Process.

Journal Article (Journal Article)

A logistic stick-breaking process (LSBP) is proposed for non-parametric clustering of general spatially- or temporally-dependent data, imposing the belief that proximate data are more likely to be clustered together. The sticks in the LSBP are realized via multiple logistic regression functions, with shrinkage priors employed to favor contiguous and spatially localized segments. The LSBP is also extended for the simultaneous processing of multiple data sets, yielding a hierarchical logistic stick-breaking process (H-LSBP). The model parameters (atoms) within the H-LSBP are shared across the multiple learning tasks. Efficient variational Bayesian inference is derived, and comparisons are made to related techniques in the literature. Experimental analysis is performed for audio waveforms and images, and it is demonstrated that for segmentation applications the LSBP yields generally homogeneous segments with sharp boundaries.

Full Text

Duke Authors

Cited Authors

  • Ren, L; Du, L; Carin, L; Dunson, DB

Published Date

  • January 2011

Published In

Volume / Issue

  • 12 / Jan

Start / End Page

  • 203 - 239

PubMed ID

  • 25258593

Pubmed Central ID

  • PMC4171738

Electronic International Standard Serial Number (EISSN)

  • 1533-7928

International Standard Serial Number (ISSN)

  • 1532-4435


  • eng