Defect-tolerant design and optimization of a digital microfluidic biochip for protein crystallization

Published

Journal Article

Protein crystallization is a commonly used technique for protein analysis and subsequent drug design. It predicts the 3-D arrangement of the constituent amino acids, which in turn indicates the specific biological function of a protein. Protein crystallization experiments are typically carried out in well-plates in the laboratory. As a result, these experiments are slow, expensive, and error-prone due to the need for repeated human intervention. Recently, droplet-based digital microfluidics have been used for executing protein assays on a chip. Protein samples in the form of nanoliter-volume droplets are manipulated using the principle of electrowetting-on-dielectric. We present the design of a multi-well-plate microfluidic biochip for protein crystallization; this biochip can transfer protein samples, prepare candidate solutions, and carry out crystallization automatically. To reduce the manufacturing cost of such devices, we present an efficient algorithm to generate a pin-assignment plan for the proposed design. The resulting biochip enables control of a large number of on-chip electrodes using only a small number of pins. Based on the pin-constrained chip design, we present an efficient shuttle-passenger-like droplet manipulation method and test procedure to achieve high-throughput and defect-tolerant well loading. © 2010 IEEE.

Full Text

Duke Authors

Cited Authors

  • Xu, T; Chakrabarty, K; Pamula, VK

Published Date

  • April 1, 2010

Published In

Volume / Issue

  • 29 / 4

Start / End Page

  • 552 - 565

International Standard Serial Number (ISSN)

  • 0278-0070

Digital Object Identifier (DOI)

  • 10.1109/TCAD.2010.2042888

Citation Source

  • Scopus