Probing the ultimate limits of plasmonic enhancement.

Published

Journal Article

Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.

Full Text

Duke Authors

Cited Authors

  • Ciracì, C; Hill, RT; Mock, JJ; Urzhumov, Y; Fernández-Domínguez, AI; Maier, SA; Pendry, JB; Chilkoti, A; Smith, DR

Published Date

  • August 2012

Published In

Volume / Issue

  • 337 / 6098

Start / End Page

  • 1072 - 1074

PubMed ID

  • 22936772

Pubmed Central ID

  • 22936772

Electronic International Standard Serial Number (EISSN)

  • 1095-9203

International Standard Serial Number (ISSN)

  • 0036-8075

Digital Object Identifier (DOI)

  • 10.1126/science.1224823

Language

  • eng