Complexity of computing optimal Stackelberg strategies in security resource allocation games


Journal Article

Recently, algorithms for computing game-theoretic solutions have been deployed in real-world security applications, such as the placement of checkpoints and canine units at Los Angeles International Airport. These algorithms assume that the defender (security personnel) can commit to a mixed strategy, a so-called Stackelberg model. As pointed out by Kiek-intveld et al. (2009), in these applications, generally, multiple resources need to be assigned to multiple targets, resulting in an exponential number of pure strategies for the defender. In this paper, we study how to compute optimal Stackelberg strategies in such games, showing that this can be done in polynomial time in some cases, and is NP-hard in others. Copyright © 2010, Association for the Advancement of Artificial Intelligence ( All rights reserved.

Duke Authors

Cited Authors

  • Korzhyk, D; Conitzer, V; Parr, R

Published Date

  • January 1, 2010

Published In

  • Proceedings of the National Conference on Artificial Intelligence

Volume / Issue

  • 2 /

Start / End Page

  • 805 - 810

Citation Source

  • Scopus