Stackelberg voting games: Computational aspects and paradoxes

Journal Article

We consider settings in which voters vote in sequence, each voter knows the votes of the earlier voters and the preferences of the later voters, and voters are strategic. This can be modeled as an extensive-form game of perfect information, which we call a Stackelberg voting game. We first propose a dynamic-programming algorithm for finding the backward-induction outcome for any Stackelberg voting game when the rule is anonymous; this algorithm is efficient if the number of alternatives is no more than a constant. We show how to use compilation functions to further reduce the time and space requirements. Our main theoretical results are paradoxes for the backward-induction outcomes of Stackelberg voting games. We show that for any n ≥ 5 and any voting rule that satisfies non-imposition and with a low domination index, there exists a profile consisting of n voters, such that the backward-induction outcome is ranked somewhere in the bottom two positions in almost every voter's preferences. Moreover, this outcome loses all but one of its pairwise elections. Furthermore, we show that many common voting rules have a very low (- 1) domination index, including all majority-consistent voting rules. For the plurality and nomination rules, we show even stronger paradoxes. Finally, using our dynamic-programming algorithm, we run simulations to compare the backward-induction outcome of the Stackelberg voting game to the winner when voters vote truthfully, for the plurality and veto rules. Surprisingly, our experimental results suggest that on average, more voters prefer the backward-induction outcome. Copyright © 2010, Association for the Advancement of Artificial Intelligence ( All rights reserved.

Duke Authors

Cited Authors

  • Xia, L; Conitzer, V

Published Date

  • January 1, 2010

Published In

  • Proceedings of the National Conference on Artificial Intelligence

Volume / Issue

  • 2 /

Start / End Page

  • 921 - 926

Citation Source

  • Scopus