Expressive negotiation over donations to charities


Journal Article

When donating money to a (say, charitable) cause, it is possible to use the contemplated donation as negotiating material to induce other parties interested in the charity to donate more. Such negotiation is usually done in terms of matching offers, where one party promises to pay a certain amount if others pay a certain amount. However, in their current form, matching offers allow for only limited negotiation. For one, it is not immediately clear how multiple parties can make matching offers at the same time without creating circular dependencies. Also, it is not immediately clear how to make a donation conditional on other donations to multiple charities, when the donator has different levels of appreciation for the different charities. In both these cases, the limited expressiveness of matching offers causes economic loss: it may happen that an arrangement that would have made all parties (donators as well as charities) better off cannot be expressed in terms of matching offers and will therefore not occur. In this paper, we introduce a bidding language for expressing very general types of matching offers over multiple charities. We formulate the corresponding clearing problem (deciding how much each bidder pays, and how much each charity receives), and show that it is NP-complete to approximate to any ratio even in very restricted settings. We give a mixed-integer program formulation of the clearing problem, and show that for concave bids, the program reduces to a linear program. We then show that the clearing problem for a subclass of concave bids is at least as hard as the decision variant of linear programming. Subsequently, we show that the clearing problem is much easier when bids are quasilinear-for surplus, the problem decomposes across charities, and for payment maximization, a greedy approach is optimal if the bids are concave (although this latter problem is weakly NP-complete when the bids are not concave). For the quasilinear setting, we study the mechanism design question. We show that an ex-post efficient mechanism is impossible even with only one charity and a very restricted class of bids. We also show that there may be benefits to linking the charities from a mechanism design standpoint.

Full Text

Duke Authors

Cited Authors

  • Conitzer, V; Sandholm, T

Published Date

  • January 1, 2004

Published In

  • Proceedings of the Acm Conference on Electronic Commerce

Volume / Issue

  • 5 /

Start / End Page

  • 51 - 60

Digital Object Identifier (DOI)

  • 10.1145/988772.988781

Citation Source

  • Scopus