Guiding the experimental discovery of magnesium alloys

Published

Journal Article

Magnesium alloys are among the lightest structural materials known and are of considerable technological interest. To develop superior magnesium alloys, experimentalists must have a thorough understanding of the concentration- dependent precipitates that form in a given system, and hence, the thermodynamic stability of crystal phases must be determined. This information is often lacking but can be supplied by first-principles methods. Within the high-throughput framework, AFLOW, T=0 K ground-state predictions are made by scanning a large set of known candidate structures for thermodynamic (formation energy) minima. The following 34 systems are investigated: AlMg, AuMg, CaMg, CdMg, CuMg, FeMg, GeMg, HgMg, IrMg, KMg, LaMg, MgMo, MgNa, MgNb, MgOs, MgPb, MgPd, MgPt, MgRb, MgRe, MgRh, MgRu, MgSc, MgSi, MgSn, MgSr, MgTa, MgTc, MgTi, MgV, MgW, MgY, MgZn, and MgZr (= systems in which the ab initio method predicts that no compounds are stable). Avenues for further investigation are clearly revealed by this work. These include stable phases predicted in compound-forming systems as well as phases predicted in systems reported to be non-compound-forming. © 2011 American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Taylor, RH; Curtarolo, S; Hart, GLW

Published Date

  • August 19, 2011

Published In

Volume / Issue

  • 84 / 8

Electronic International Standard Serial Number (EISSN)

  • 1550-235X

International Standard Serial Number (ISSN)

  • 1098-0121

Digital Object Identifier (DOI)

  • 10.1103/PhysRevB.84.084101

Citation Source

  • Scopus