Skip to main content
Journal cover image

Hydrogeomorphic controls on phosphorus retention in streams

Publication ,  Journal Article
Doyle, MW; Stanley, EH; Harbor, JM
Published in: Water Resources Research
January 1, 2003

We compared the relative influences of biochemical uptake processes and dynamic hydrology and geomorphology (hydrogeomorphology) on molybdate reactive phosphorus (MRP) retention within a stream. MRP concentrations were measured upstream and downstream of a 4.5-km reach undergoing dynamic channel adjustment in response to downstream dam removal. Geomorphic adjustments following removal produced measurable changes in velocity and depth, and decreases in MRP retention. Paired upstream and downstream measurements of MRP concentration were used to compute three retention metrics: uptake rate, mass transfer coefficient, and uptake length, which were used as model parameters. Modeling results showed that changes in channel morphology alone following dam removal could result in an approximate 40% increase in downstream MRP concentrations compared with conditions with the dam in place. However, empirical and modeling results indicate that hydrogeomorphology can control nutrient retention on the reach scale only when uptake processes are either sufficiently great or when uptake rates have limited variability. Review of published phosphorus retention values revealed greater variability in biochemical uptake rates than in hydrogeomorphology. Thus uptake rates should exert a stronger control on reach-scale MRP retention than changing channel morphology or hydrology. These results suggest that maintaining or restoring channel conditions that are conducive to biochemical uptake are of greater priority than restoration of hydrologic or geomorphic conditions alone.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Water Resources Research

DOI

ISSN

0043-1397

Publication Date

January 1, 2003

Volume

39

Issue

6

Related Subject Headings

  • Environmental Engineering
  • 4011 Environmental engineering
  • 4005 Civil engineering
  • 3707 Hydrology
  • 0907 Environmental Engineering
  • 0905 Civil Engineering
  • 0406 Physical Geography and Environmental Geoscience
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Doyle, M. W., Stanley, E. H., & Harbor, J. M. (2003). Hydrogeomorphic controls on phosphorus retention in streams. Water Resources Research, 39(6). https://doi.org/10.1029/2003WR002038
Doyle, M. W., E. H. Stanley, and J. M. Harbor. “Hydrogeomorphic controls on phosphorus retention in streams.” Water Resources Research 39, no. 6 (January 1, 2003). https://doi.org/10.1029/2003WR002038.
Doyle MW, Stanley EH, Harbor JM. Hydrogeomorphic controls on phosphorus retention in streams. Water Resources Research. 2003 Jan 1;39(6).
Doyle, M. W., et al. “Hydrogeomorphic controls on phosphorus retention in streams.” Water Resources Research, vol. 39, no. 6, Jan. 2003. Scopus, doi:10.1029/2003WR002038.
Doyle MW, Stanley EH, Harbor JM. Hydrogeomorphic controls on phosphorus retention in streams. Water Resources Research. 2003 Jan 1;39(6).
Journal cover image

Published In

Water Resources Research

DOI

ISSN

0043-1397

Publication Date

January 1, 2003

Volume

39

Issue

6

Related Subject Headings

  • Environmental Engineering
  • 4011 Environmental engineering
  • 4005 Civil engineering
  • 3707 Hydrology
  • 0907 Environmental Engineering
  • 0905 Civil Engineering
  • 0406 Physical Geography and Environmental Geoscience