Architectural implications of nanoscale integrated sensing and computing

Journal Article

This paper explores the architectural implications of integrating computation and molecular probes to form nanoscale sensor processors (nSP). We show how nSPs may enable new computing domains and automate tasks that currently require expert scientific training and costly equipment. This new application domain severely constrains nSP size, which significantly impacts the architectural design space. In this context, we explore nSP architectures and present an nSP design that includes a simple accumulator-based ISA, sensors, limited memory and communication transceivers. To reduce the application memory footprint, we introduce the concept of instructionfused sensing. We use simulation and analytical models to evaluate nSP designs executing a representative set of target applications. Furthermore, we propose a candidate nSP technology based on optical Resonance Energy Transfer (RET) logic that enables the small size required by the application domain; our smallest design is about the size of the largest kno wn virus. We also show laboratory results that demonstrate initial steps towards a prototype. © 2009 ACM.

Full Text

Duke Authors

Cited Authors

  • Pistol, C; Dwyer, C; Lebeck, AR

Published Date

  • January 1, 2009

Published In

  • International Conference on Architectural Support for Programming Languages and Operating Systems Asplos

Start / End Page

  • 13 - 24

Digital Object Identifier (DOI)

  • 10.1145/1508244.1508247

Citation Source

  • Scopus