CT perfusion parameter values in regions of diffusion abnormalities.

Journal Article (Journal Article)

BACKGROUND AND PURPOSE: Dynamic CT perfusion imaging is a rapid and widely available method for assessing cerebral hemodynamics in the setting of ischemia. Nevertheless, little is known about perfusion parameters within regions of diffusion abnormality. Since MR diffusion-weighted (DW) imaging is widely considered the most sensitive and specific technique to examine the ischemic core, new knowledge about CT perfusion findings in areas of abnormal diffusion would likely provide valuable information. The purpose of our study was to measure the CT-derived perfusion values within acute ischemic lesions characterized by 1) increased signal intensity on DW images and 2) decreased apparent diffusion coefficient (ADC) and compare these values with those measured in contralateral, normal brain tissue. METHODS: Analysis was performed in 10 patients with acute middle cerebral artery territory stroke of symptom onset less than 8 hours before imaging who had undergone both CT perfusion and DW imaging within 2 hours. After registration of CT perfusion and DW images, measurements were made on a pixel-by-pixel basis in regions of abnormal hyperintensity on DW images and in areas of decreased ADC. RESULTS: Significant decreases in cerebral blood flow and cerebral blood volume with elevated mean transit times were observed in regions of infarct as defined by increased signal intensity on DW images and decreased ADC. Comparison of perfusion parameters in regions of core infarct differed significantly from those measured in contralateral normal brain. CONCLUSION: CT perfusion findings of decreased cerebral blood flow, mean transit time, and cerebrovascular volume correlate with areas of abnormal hyperintensity on DW images and regions of decreased ADC. These findings provide important information about perfusion changes in acute ischemia in areas of diffusion abnormality.

Full Text

Duke Authors

Cited Authors

  • Galvez, M; York, GE; Eastwood, JD

Published Date

  • August 2004

Published In

Volume / Issue

  • 25 / 7

Start / End Page

  • 1205 - 1210

PubMed ID

  • 15313711

Pubmed Central ID

  • PMC7976532

International Standard Serial Number (ISSN)

  • 0195-6108


  • eng

Conference Location

  • United States