Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis.

Published

Journal Article (Review)

This synthesis reviews the physiological ecology and behavior of larvae of the benthic crab Rhithropanopeus harrisii, which occurs in low-salinity areas of estuaries. Larvae are released rhythmically around the time of high tide in tidal estuaries and in the 2-h interval after sunset in nontidal estuaries. As in most subtidal crustaceans, the timing of larval release is controlled by the developing embryos, which release peptide pheromones that stimulate larval release behavior by the female to synchronize the time of egg hatching. Larvae pass through four zoeal stages and a postlarval or megalopal stage that are planktonic before metamorphosis. They are retained near the adult population by means of an endogenous tidal rhythm in vertical migration. Larvae have several safeguards against predation: they undergo nocturnal diel vertical migration (DVM) and have a shadow response to avoid encountering predators, and they bear long spines as a deterrent. Photoresponses during DVM and the shadow response are enhanced by exposure to chemical cues from the mucus of predator fishes and ctenophores. The primary visual pigment has a spectral sensitivity maximum at about 500 nm, which is typical for zooplankton and matches the ambient spectrum at twilight. Larvae can detect vertical gradients in temperature, salinity, and hydrostatic pressure, which are used for depth regulation and avoidance of adverse environmental conditions. Characteristics that are related to the larval habitat and are common to other crab larval species are considered.

Full Text

Duke Authors

Cited Authors

  • Forward, RB

Published Date

  • June 2009

Published In

Volume / Issue

  • 216 / 3

Start / End Page

  • 243 - 256

PubMed ID

  • 19556592

Pubmed Central ID

  • 19556592

Electronic International Standard Serial Number (EISSN)

  • 1939-8697

International Standard Serial Number (ISSN)

  • 0006-3185

Digital Object Identifier (DOI)

  • 10.1086/bblv216n3p243

Language

  • eng