-Measurement of the proton's electric to magnetic form factor ratio from 1H(over -->)(e(over -->),e'p).

Journal Article (Journal Article)

We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed at the MIT-Bates South Hall Ring over a range of four-momentum transfer squared Q2 from 0.15 to 0.65 (GeV/c)(2). Significantly improved results on the proton electric and magnetic form factors are obtained in combination with existing cross-section data on elastic electron-proton scattering in the same Q2 region.

Full Text

Duke Authors

Cited Authors

  • Crawford, CB; Sindile, A; Akdogan, T; Alarcon, R; Bertozzi, W; Booth, E; Botto, T; Calarco, J; Clasie, B; Degrush, A; Donnelly, TW; Dow, K; Dutta, D; Farkhondeh, M; Fatemi, R; Filoti, O; Franklin, W; Gao, H; Geis, E; Gilad, S; Haeberli, W; Hasell, D; Hersman, W; Holtrop, M; Karpius, P; Kohl, M; Kolster, H; Lee, T; Maschinot, A; Matthews, J; McIlhany, K; Meitanis, N; Milner, RG; Redwine, RP; Seely, J; Shinozaki, A; Sirca, S; Six, E; Smith, T; Tonguc, B; Tschalaer, C; Tsentalovich, E; Turchinetz, W; van den Brand, JF; van der Laan, J; Wang, F; Wise, T; Xiao, Y; Xu, W; Zhang, C; Zhou, Z; Ziskin, V; Zwart, T

Published Date

  • February 2007

Published In

Volume / Issue

  • 98 / 5

Start / End Page

  • 052301 -

PubMed ID

  • 17358849

Electronic International Standard Serial Number (EISSN)

  • 1079-7114

International Standard Serial Number (ISSN)

  • 0031-9007

Digital Object Identifier (DOI)

  • 10.1103/physrevlett.98.052301


  • eng