Modeling operational modes of a bipolar vacuum microelectronic device

Published

Journal Article

Vacuum microelectronic devices (VMDs) designed for bipolar charge operation hold great promise for applications in radiation-intensive and high-temperature environments. This novel class of devices was first realized in a microelectromechanical platform leveraging integrated carbon nanotube field emitters and an addressable pentode structure for controlling electron-impact dynamics in Ar ambients. That proof of concept demands the development of basic numerical models to aid device optimization. We address this need in the form of a two-fluid model of carrier transport dynamics in a bipolar VMD (BVMD). The fluid model captures the behavior of operational modes demonstrated in previously reported devices. Moreover, this approach promises insight into potentially unforeseen pressure and frequency dependences of the BVMD platform. © 2012 IEEE.

Full Text

Duke Authors

Cited Authors

  • Madison, AC; Parker, CB; Glass, JT; Stoner, BR

Published Date

  • August 27, 2012

Published In

Volume / Issue

  • 33 / 10

Start / End Page

  • 1498 - 1500

International Standard Serial Number (ISSN)

  • 0741-3106

Digital Object Identifier (DOI)

  • 10.1109/LED.2012.2208445

Citation Source

  • Scopus