In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars.

Published

Journal Article

Gold nanostars offer unique plasmon properties that efficiently transduce photon energy into heat for photothermal therapy. Nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross-sections that are tunable in the near-infrared region with relatively low scattering effect, making them efficient photothermal transducers. Here, we demonstrate particle tracking and photothermal ablation both in vitro and in vivo. Using SKBR3 breast cancer cells incubated with bare nanostars, we observed photothermal ablation within 5 minutes of irradiation (980-nm continuous-wave laser, 15 W/cm2). On a mouse injected systemically with PEGylated nanostars for 2 days, extravasation of nanostars was observed and localized photothermal ablation was demonstrated on a dorsal window chamber within 10 minutes of irradiation (785-nm continuous-wave laser, 1.1 W/cm2). These preliminary results of plasmon-enhanced localized hyperthermia are encouraging and have illustrated the potential of gold nanostars as efficient photothermal agents in cancer therapy.Gold nanostars are tunable in the near-infrared region with low scattering, thus enable photothermal therapy. Encouraging preliminary results of plasmon-enhanced localized hyperthermia both in vitro and in vivo demonstrate that Au nanostars may be efficient photothermal agents for cancer therapy.

Full Text

Duke Authors

Cited Authors

  • Yuan, H; Khoury, CG; Wilson, CM; Grant, GA; Bennett, AJ; Vo-Dinh, T

Published Date

  • November 2012

Published In

Volume / Issue

  • 8 / 8

Start / End Page

  • 1355 - 1363

PubMed ID

  • 22370335

Pubmed Central ID

  • 22370335

Electronic International Standard Serial Number (EISSN)

  • 1549-9642

International Standard Serial Number (ISSN)

  • 1549-9634

Digital Object Identifier (DOI)

  • 10.1016/j.nano.2012.02.005

Language

  • eng