Mean flow and spiral defect chaos in Rayleigh-Bénard convection.

Journal Article (Journal Article)

We describe a numerical procedure to construct a modified velocity field that does not have any mean flow. Using this procedure, we present two results. First, we show that, in the absence of the mean flow, spiral defect chaos collapses to a stationary pattern comprising textures of stripes with angular bends. The quenched patterns are characterized by mean wave numbers that approach those uniquely selected by focus-type singularities, which, in the absence of the mean flow, lie at the zigzag instability boundary. The quenched patterns also have larger correlation lengths and are comprised of rolls with less curvature. Secondly, we describe how the mean flow can contribute to the commonly observed phenomenon of rolls terminating perpendicularly into lateral walls. We show that, in the absence of the mean flow, rolls begin to terminate into lateral walls at an oblique angle. This obliqueness increases with the Rayleigh number.

Full Text

Duke Authors

Cited Authors

  • Chiam, KH; Paul, MR; Cross, MC; Greenside, HS

Published Date

  • May 14, 2003

Published In

Volume / Issue

  • 67 / 5 Pt 2

Start / End Page

  • 056206 -

PubMed ID

  • 12786249

Electronic International Standard Serial Number (EISSN)

  • 1550-2376

International Standard Serial Number (ISSN)

  • 1539-3755

Digital Object Identifier (DOI)

  • 10.1103/physreve.67.056206


  • eng