Molecular dissection of an outbreak of carbapenem-resistant enterobacteriaceae reveals Intergenus KPC carbapenemase transmission through a promiscuous plasmid.

Published online

Journal Article

Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as major causes of health care-associated infections worldwide. This diverse collection of organisms with various resistance mechanisms is associated with increased lengths of hospitalization, costs of care, morbidity, and mortality. The global spread of CRE has largely been attributed to dissemination of a dominant strain of Klebsiella pneumoniae producing a serine β-lactamase, termed K. pneumoniae carbapenemase (KPC). Here we report an outbreak of KPC-producing CRE infections in which the degree of horizontal transmission between strains and species of a promiscuous plasmid is unprecedented. Sixteen isolates, comprising 11 unique strains, 6 species, and 4 genera of bacteria, were obtained from 14 patients over the first 8 months of the outbreak. Of the 11 unique strains, 9 harbored the same highly promiscuous plasmid carrying the KPC gene bla(KPC). The remaining strains harbored distinct bla(KPC) plasmids, one of which was carried in a strain of Klebsiella oxytoca coisolated from the index patient and the other generated from transposition of the bla(KPC) element Tn4401. All isolates could be genetically traced to the index patient. Molecular epidemiological investigation of the outbreak was aided by the adaptation of nested arbitrary PCR (ARB-PCR) for rapid plasmid identification. This detailed molecular genetic analysis, combined with traditional epidemiological investigation, provides insights into the highly fluid dynamics of drug resistance transmission during the outbreak. IMPORTANCE The ease of horizontal transmission of carbapenemase resistance plasmids across strains, species, and genera of bacteria observed in this study has several important public health and epidemiological implications. First, it has the potential to promote dissemination of carbapenem resistance to new populations of Enterobacteriaceae, including organisms of low virulence, leading to the establishment of reservoirs of carbapenem resistance genes in patients and/or the environment and of high virulence, raising the specter of untreatable community-associated infections. Second, recognition of plasmid-mediated outbreaks, such as those described here, is problematic because analysis of resistance plasmids from clinical isolates is laborious and technically challenging. Adaptation of nested arbitrary PCR (ARB-PCR) to investigate the plasmid outbreak facilitated our investigation, and the method may be broadly applicable to other outbreaks due to other conserved mobile genetic elements. Whether infection control measures that focus on preventing transmission of drug-resistant clones are effective in controlling dissemination of these elements is unknown.

Full Text

Duke Authors

Cited Authors

  • Mathers, AJ; Cox, HL; Kitchel, B; Bonatti, H; Brassinga, AKC; Carroll, J; Scheld, WM; Hazen, KC; Sifri, CD

Published Date

  • 2011

Published In

Volume / Issue

  • 2 / 6

Start / End Page

  • e00204 - e00211

PubMed ID

  • 22045989

Pubmed Central ID

  • 22045989

Electronic International Standard Serial Number (EISSN)

  • 2150-7511

Digital Object Identifier (DOI)

  • 10.1128/mBio.00204-11

Language

  • eng

Conference Location

  • United States