Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans.

Journal Article (Journal Article)

Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (∼50%), but at a much lower frequency during vegetative growth (∼0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ∼90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling.

Full Text

Duke Authors

Cited Authors

  • Wang, X; Wang, P; Sun, S; Darwiche, S; Idnurm, A; Heitman, J

Published Date

  • 2012

Published In

Volume / Issue

  • 8 / 8

Start / End Page

  • e1002885 -

PubMed ID

  • 22916030

Pubmed Central ID

  • PMC3420925

Electronic International Standard Serial Number (EISSN)

  • 1553-7404

Digital Object Identifier (DOI)

  • 10.1371/journal.pgen.1002885


  • eng

Conference Location

  • United States