R/BHC: fast Bayesian hierarchical clustering for microarray data.

Published

Journal Article

Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained.We present an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative hierarchical clustering and demonstrate its use in clustering gene expression microarray data. The method performs bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture) to model uncertainty in the data and Bayesian model selection to decide at each step which clusters to merge.Biologically plausible results are presented from a well studied data set: expression profiles of A. thaliana subjected to a variety of biotic and abiotic stresses. Our method avoids several limitations of traditional methods, for example how many clusters there should be and how to choose a principled distance metric.

Full Text

Duke Authors

Cited Authors

  • Savage, RS; Heller, K; Xu, Y; Ghahramani, Z; Truman, WM; Grant, M; Denby, KJ; Wild, DL

Published Date

  • August 6, 2009

Published In

Volume / Issue

  • 10 /

Start / End Page

  • 242 -

PubMed ID

  • 19660130

Pubmed Central ID

  • 19660130

Electronic International Standard Serial Number (EISSN)

  • 1471-2105

International Standard Serial Number (ISSN)

  • 1471-2105

Digital Object Identifier (DOI)

  • 10.1186/1471-2105-10-242

Language

  • eng