Elemental spectrum of a mouse obtained via neutron stimulation

Published

Journal Article

Several studies have shown that the concentration of certain elements may be a disease indicator. We are developing a spectroscopic imaging technique, Neutron Stimulated Emission Computed Tomography (NSECT), to non-invasively measure and image elemental concentrations within the body. The region of interest is interrogated via a beam of highenergy neutrons that excite elemental nuclei through inelastic scatter. These excited nuclei then relax by emitting characteristic gamma radiation. Acquiring the gamma energy spectrum in a tomographic geometry allows reconstruction of elemental concentration images. Our previous studies have demonstrated NSECT's ability to obtain spectra and images of known elements and phantoms, as well as, initial interrogations of biological tissue. Here, we describe the results obtained from NSECT interrogation of a fixed mouse specimen. The specimen was interrogated via a 5MeV neutron beam for 9.3 hours in order to ensure reasonable counting statistics. The gamma energy spectrum was obtained using two High-Purity Germanium (HPGe) clover detectors. A background spectrum was obtained by interrogating a specimen container containing 50mL of 0.9% NaCl solution. Several elements of biological interest including 12C, 40Ca, 31P, and 39K were identified with greater then 90% confidence. This interrogation demonstrates the feasibility of NSECT interrogation of small animals. Interrogation with a commercial neutron source that provides higher neutron flux and lower energy (∼2.5MeV) neutrons would reduce scanning time and eliminate background from certain elements.

Full Text

Duke Authors

Cited Authors

  • Sharma, AC; Tourassi, GD; Kapadia, AJ; Crowell, AS; Kiser, MR; Hutcheson, A; Harrawood, BP; Howell, CR; Floyd, CE

Published Date

  • October 15, 2007

Published In

Volume / Issue

  • 6510 / PART 1

International Standard Serial Number (ISSN)

  • 1605-7422

Digital Object Identifier (DOI)

  • 10.1117/12.713731

Citation Source

  • Scopus