Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions.

Published

Journal Article

Despite the long-established therapeutic efficacy of lithium in the treatment of bipolar disorder (BPD), its molecular mechanism of action remains elusive. Newly developed stable isotope-resolved metabolomics (SIRM) is a powerful approach that can be used to elucidate systematically how lithium impacts glial and neuronal metabolic pathways and activities, leading ultimately to deciphering its molecular mechanism of action. The effect of lithium on the metabolism of three different (13)C-labeled precursors ([U-(13)C]-glucose, (13)C-3-lactate or (13)C-2,3-alanine) was analyzed in cultured rat astrocytes and neurons by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Using [U-(13)C]-glucose, lithium was shown to enhance glycolytic activity and part of the Krebs cycle activity in both astrocytes and neurons, particularly the anaplerotic pyruvate carboxylation (PC). The PC pathway was previously thought to be active in astrocytes but absent in neurons. Lithium also stimulated the extracellular release of (13)C labeled-lactate, -alanine (Ala), -citrate, and -glutamine (Gln) by astrocytes. Interrogation of neuronal pathways using (13)C-3-lactate or (13)C-2,3-Ala as tracers indicated a high capacity of neurons to utilize lactate and Ala in the Krebs cycle, particularly in the production of labeled Asp and Glu via PC and normal cycle activity. Prolonged lithium treatment enhanced lactate metabolism via PC but inhibited lactate oxidation via the normal Krebs cycle in neurons. Such lithium modulation of glycolytic, PC and Krebs cycle activity in astrocytes and neurons as well as release of fuel substrates by astrocytes should help replenish Krebs cycle substrates for Glu synthesis while meeting neuronal demands for energy. Further investigations into the molecular regulation of these metabolic traits should provide new insights into the pathophysiology of mood disorders and early diagnostic markers, as well as new target(s) for effective therapies.

Full Text

Duke Authors

Cited Authors

  • Fan, TW-M; Yuan, P; Lane, AN; Higashi, RM; Wang, Y; Hamidi, AB; Zhou, R; Guitart, X; Chen, G; Manji, HK; Kaddurah-Daouk, R

Published Date

  • June 1, 2010

Published In

Volume / Issue

  • 6 / 2

Start / End Page

  • 165 - 179

PubMed ID

  • 20631920

Pubmed Central ID

  • 20631920

International Standard Serial Number (ISSN)

  • 1573-3882

Digital Object Identifier (DOI)

  • 10.1007/s11306-010-0208-9

Language

  • eng

Conference Location

  • United States