Substance P and its receptor neurokinin 1 expression in asthmatic airways.


Journal Article

BACKGROUND: Neural mechanisms have been suggested to contribute to the pathogenesis of chronic asthma. The expression of neuropeptides such as substance P may be regulated by infectious pathogens, including Mycoplasma species. In contrast to substance P, the substance P receptor neurokinin 1 has not been examined at the protein level in asthmatic airways. OBJECTIVE: This study evaluated substance P and neurokinin 1 protein expression and mucus content in endobronchial biopsy specimens from normal control subjects and asthmatic subjects. Detection of Mycoplasma pneumoniae was performed in both biopsy and bronchoalveolar lavage specimens. METHODS: Biopsy specimens were collected from 10 normal control subjects and 18 asthmatic subjects before and after a 6-week treatment with a macrolide antibiotic (n = 11) or placebo (n = 7) and were stained for substance P, neurokinin 1, and mucus. M pneumoniae was evaluated by PCR. RESULTS: At baseline, compared with normal control subjects, asthmatic subjects demonstrated increased expression of substance P and neurokinin 1 and mucus content in the airway epithelium. Epithelial mucus content correlated with epithelial substance P expression (r (s) = 0.45, P =.04) and FEV(1) percent predicted (r (s) = -0.51, P =.019). After antibiotic treatment, both epithelial substance P and neurokinin 1 expression were significantly reduced in asthmatic subjects. M pneumoniae was found in 8 of 18 asthmatic subjects. Asthmatic subjects with M pneumoniae, compared with those without M pneumoniae, showed higher baseline epithelial neurokinin 1 expression, which was significantly reduced after antibiotic treatment (P =.02). CONCLUSION: Our data suggest that abnormalities in neural mechanisms may exist in the epithelium of asthmatic airways, and M pneumoniae is possibly involved in this process. Antibiotic intervention may be effective in the treatment of asthma partly through the downregulation of the neurogenic process.

Full Text

Cited Authors

  • Chu, HW; Kraft, M; Krause, JE; Rex, MD; Martin, RJ

Published Date

  • October 2000

Published In

Volume / Issue

  • 106 / 4

Start / End Page

  • 713 - 722

PubMed ID

  • 11031342

Pubmed Central ID

  • 11031342

Electronic International Standard Serial Number (EISSN)

  • 1097-6825

International Standard Serial Number (ISSN)

  • 1097-6825

Digital Object Identifier (DOI)

  • 10.1067/mai.2000.109829


  • eng