An inverse algorithm for a mathematical model of an avian urine concentrating mechanism.

Published

Journal Article

A nonlinear optimization technique, in conjunction with a single-nephron, single-solute mathematical model of the quail urine concentrating mechanism, was used to estimate parameter sets that optimize a measure of concentrating mechanism efficiency, viz., the ratio of the free-water absorption rate to the total NaCl active transport rate. The optimization algorithm, which is independent of the numerical method used to solve the model equations, runs in a few minutes on a 1000 MHz desktop computer. The parameters varied were: tubular permeabilities to water and solute; maximum active solute transport rates of the ascending limb of Henle and the collecting duct (CD); length of the prebend enlargement (PBE) of the descending limb; fractional solute delivery to the CD; solute concentration of tubular fluid entering the CD at the cortico-medullary boundary; and rate of exponential CD population decrease along the medullary cone. Using a base-case parameter set and parameter bounds suggested by physiologic experiments, the optimization algorithm identified a maximum-efficiency set of parameter values that increased efficiency by 40% above base-case efficiency; a minimum-efficiency set reduced efficiency by about 41%. When maximum-efficiency parameter values were computed as medullary length varied over the physiologic range, the PBE was found to make up 88% of a short medullary cone but only 8% of a long medullary cone.

Full Text

Duke Authors

Cited Authors

  • Marcano-Velázquez, M; Layton, HE

Published Date

  • July 2003

Published In

Volume / Issue

  • 65 / 4

Start / End Page

  • 665 - 691

PubMed ID

  • 12875338

Pubmed Central ID

  • 12875338

Electronic International Standard Serial Number (EISSN)

  • 1522-9602

International Standard Serial Number (ISSN)

  • 0092-8240

Digital Object Identifier (DOI)

  • 10.1016/s0092-8240(03)00029-6

Language

  • eng