Effects of ginseng saponin on acute cocaine-induced alterations in evoked dopamine release and uptake in rat brain nucleus accumbens.


Journal Article

In traditional medicine, Panax ginseng has been used to treat various behavioral effects of psychostimulants (e.g., cocaine) and other drugs of abuse and to ameliorate withdrawal symptoms. The neurochemical bases for this efficacy, however, remain to be elucidated. We previously used the real-time fast-scan cyclic voltammetry in rat nucleus accumbens slices to demonstrate that cocaine not only enhances DA release evoked by single-pulse electrical stimulation and inhibits DA uptake during application but also further increases the release upon washout (termed a "rebound" release enhancement). In the present study, we determined whether co-application and washout of ginseng total saponin (GTS), the active ingredient of Panax ginseng, with cocaine attenuate cocaine-induced enhancement of evoked DA release, DA uptake inhibition and/or withdrawal-associated rebound enhancement. Cocaine rapidly potentiated the DA release within the first 10 min of application, and acute cocaine withdrawal caused a rebound increase. Co-application of GTS with cocaine inhibited the release enhancement and subsequently prevented the rebound increase during acute withdrawal. The effect of GTS was concentration-dependent. In contrast, GTS had no significant effects on the cocaine-mediated DA uptake inhibition. These results suggest that the attenuation of the cocaine-induced enhancement of impulse-dependent DA release, rather than uptake inhibition, might be one of the pharmacological bases for attenuation of behavioral effects of cocaine and amelioration of acute withdrawal symptoms by ginseng.

Full Text

Cited Authors

  • Nah, S-Y; Bhatia, KS; Lyles, J; Ellinwood, EH; Lee, TH

Published Date

  • January 2009

Published In

Volume / Issue

  • 1248 /

Start / End Page

  • 184 - 190

PubMed ID

  • 19026615

Pubmed Central ID

  • 19026615

Electronic International Standard Serial Number (EISSN)

  • 1872-6240

International Standard Serial Number (ISSN)

  • 0006-8993

Digital Object Identifier (DOI)

  • 10.1016/j.brainres.2008.10.064


  • eng