Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases.

Published

Journal Article

G protein-coupled receptors (GPCRs) initiate Ras-dependent activation of the Erk 1/2 mitogen-activated protein kinase cascade by stimulating recruitment of Ras guanine nucleotide exchange factors to the plasma membrane. Both integrin-based focal adhesion complexes and receptor tyrosine kinases have been proposed as scaffolds upon which the GPCR-induced Ras activation complex may assemble. Using specific inhibitors of focal adhesion complex assembly and receptor tyrosine kinase activation, we have determined the relative contribution of each to activation of the Erk 1/2 cascade following stimulation of endogenous GPCRs in three different cell types. The tetrapeptide RGDS, which inhibits integrin dimerization, and cytochalasin D, which depolymerizes the actin cytoskeleton, disrupt the assembly of focal adhesions. In PC12 rat pheochromocytoma cells, both agents block lysophosphatidic acid (LPA)- and bradykinin-stimulated Erk 1/2 phosphorylation, suggesting that intact focal adhesion complexes are required for GPCR-induced mitogen-activated protein kinase activation in these cells. In Rat 1 fibroblasts, Erk 1/2 activation via LPA and thrombin receptors is completely insensitive to both agents. Conversely, the epidermal growth factor receptor-specific tyrphostin AG1478 inhibits GPCR-mediated Erk 1/2 activation in Rat 1 cells but has no effect in PC12 cells. In HEK-293 human embryonic kidney cells, LPA and thrombin receptor-mediated Erk 1/2 activation is partially sensitive to both the RGDS peptide and tyrphostin AG1478, suggesting that both focal adhesion and receptor tyrosine kinase scaffolds are employed in these cells. The dependence of GPCR-mediated Erk 1/2 activation on intact focal adhesions correlates with expression of the calcium-regulated focal adhesion kinase, Pyk2. In all three cell types, GPCR-stimulated Erk 1/2 activation is significantly inhibited by the Src kinase inhibitors, herbimycin A and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-D-3,4-pyrimidine (PP1), suggesting that Src family nonreceptor tyrosine kinases represent a point of convergence for signals originating from either scaffold.

Full Text

Duke Authors

Cited Authors

  • Della Rocca, GJ; Maudsley, S; Daaka, Y; Lefkowitz, RJ; Luttrell, LM

Published Date

  • May 14, 1999

Published In

Volume / Issue

  • 274 / 20

Start / End Page

  • 13978 - 13984

PubMed ID

  • 10318809

Pubmed Central ID

  • 10318809

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.274.20.13978

Language

  • eng

Conference Location

  • United States