Mechanical behavior of human embryonic stem cell pellet under unconfined compression.

Published

Journal Article

As a prelude to the understanding of mechanotransduction in human embryonic stem cell (hESC) differentiation, the mechanical behavior of hESCs in the form of cell pellet is studied. The pellets were tested after 3 or 5 weeks of cell culture in order to demonstrate the effect of the duration of cell culture on the mechanical properties of the pellets. A micromechanical tester was used to conduct unconfined compression on hESC pellet, and experimental, numerical, and analytical methods were combined to determine the mechanical properties of hESC pellet. It is assumed that the mechanical behavior of hESC pellets can be described by an isotropic, linear viscoelastic model consisting of a spring and two Maxwell units in parallel, and the Poisson's ratio of the hESC pellet is constant based on pellet deformation in the direction perpendicular to the compression direction. Finite element method (FEM) simulation was adopted to determine the values of Poisson's ratio and the five parameters contained in the viscoelastic model. The variations of Poisson's ratio and the initial elastic modulus are found to be larger compared with those of the four other parameters. Results show that longer duration of cell culture leads to higher modulus of hESC pellet. The effect of pellet size error on the values of mechanical parameters determined is studied using FEM simulation, and it is found that the effect of size error on Poisson's ratio and initial elastic modulus is much larger than that on the other parameters.

Full Text

Cited Authors

  • Ma, G; Petersen, E; Leong, KW; Liao, K

Published Date

  • May 2012

Published In

Volume / Issue

  • 11 / 5

Start / End Page

  • 703 - 714

PubMed ID

  • 21858691

Pubmed Central ID

  • 21858691

Electronic International Standard Serial Number (EISSN)

  • 1617-7940

International Standard Serial Number (ISSN)

  • 1617-7959

Digital Object Identifier (DOI)

  • 10.1007/s10237-011-0344-9

Language

  • eng