Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.

Published

Journal Article

Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO(2) deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO(2)), areal density (8.80 mg/cm(2)), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells with high performance, showing significant potential in flexible energy storage devices.

Full Text

Duke Authors

Cited Authors

  • Cheng, Y; Lu, S; Zhang, H; Varanasi, CV; Liu, J

Published Date

  • August 2012

Published In

Volume / Issue

  • 12 / 8

Start / End Page

  • 4206 - 4211

PubMed ID

  • 22823066

Pubmed Central ID

  • 22823066

Electronic International Standard Serial Number (EISSN)

  • 1530-6992

International Standard Serial Number (ISSN)

  • 1530-6984

Digital Object Identifier (DOI)

  • 10.1021/nl301804c

Language

  • eng