CMOS-based carbon nanotube pass-transistor logic integrated circuits.
Journal Article (Journal Article)
Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration.
Full Text
Duke Authors
Cited Authors
- Ding, L; Zhang, Z; Liang, S; Pei, T; Wang, S; Li, Y; Zhou, W; Liu, J; Peng, L-M
Published Date
- January 2012
Published In
Volume / Issue
- 3 /
Start / End Page
- 677 -
PubMed ID
- 22334080
Pubmed Central ID
- 22334080
Electronic International Standard Serial Number (EISSN)
- 2041-1723
International Standard Serial Number (ISSN)
- 2041-1723
Digital Object Identifier (DOI)
- 10.1038/ncomms1682
Language
- eng