Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO


Journal Article

Ultrafast time-resolved photoluminescence spectroscopy following one- and two-photon excitations of ZnO powder is used to gain unprecedented insight into the surprisingly high external quantum efficiency of its "green" defect emission band. The role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and nonradiative traps are comparatively elucidated for the ultraviolet excitonic and "green" defect emission bands in both unannealed nanometer-sized ZnO powders and annealed micrometer-sized ZnO:Zn powders. We find that the primary mechanism limiting quantum efficiency is surface recombination because of the high density of nonradiative surface traps in these powders. It is found that unannealed ZnO has a high density of bulk nonradiative traps as well, but the annealing process reduces the density of these bulk traps while simultaneously creating a high density of green-emitting defects near the particle surface. The data are discussed in the context of a simple rate equation model that accounts for the quantum efficiencies of both emission bands. The results indicate how defect engineering could improve the efficiency of ultraviolet-excited ZnO:Zn-based white light phosphors. © 2010 The American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Foreman, JV; Everitt, HO; Yang, J; McNicholas, T; Liu, J

Published Date

  • March 15, 2010

Published In

Volume / Issue

  • 81 / 11

Electronic International Standard Serial Number (EISSN)

  • 1550-235X

International Standard Serial Number (ISSN)

  • 1098-0121

Digital Object Identifier (DOI)

  • 10.1103/PhysRevB.81.115318

Citation Source

  • Scopus