# Designing overlay multicast networks for streaming

Published

Journal Article

In this paper we present a polynomial time approximation algorithm for designing a multicast overlay network. The algorithm finds a solution that satisfies capacity and reliability constraints to within a constant factor of optimal, and cost to within a logarithmic factor. The class of networks that our algorithm applies to includes the one used by Akamai Technologies to deliver live media streams over the Internet. In particular, we analyze networks consisting of three stages of nodes. The nodes in the first stage are the sources where live streams originate. A source forwards each of its streams to one or more nodes in the second stage, which are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage, which are called the sinks. As the packets in a stream travel from one stage to the next, some of them may be lost. The job of a sink is to combine the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. We assume that the loss rate between any pair of nodes in the network is known, and that losses between different pairs are independent, but discuss extensions in which some losses may be correlated.

### Duke Authors

### Cited Authors

- Andreev, K; Maggs, BM; Meyerson, A; Sitaraman, RK

### Published Date

- July 28, 2003

### Published In

- Annual Acm Symposium on Parallel Algorithms and Architectures

### Start / End Page

- 149 - 158

### Citation Source

- Scopus