Construction of a very high-density extracellular electrode array.

Published

Journal Article

Cellular activation mapping (specifying in time and space the electrical activation sequence of cells) is a well-established basic research tool in cardiac, neural, and gastric physiology. Much recent research in cardiac mapping has focused on large arrays (>200 electrodes) with small electrodes (<500 microm). Construction of such arrays using standard techniques is tedious and yields irregular electrode spacing. We present a novel construction technique that rapidly produces large arrays with regularly spaced small electrodes. For methods, fine-pitch copper ribbon cables, insulated with either polyvinylchloride (PVC) or polyimide (flexible printed circuit; FPC), were assembled together such that the active surface was the cut end of the cable. The cut end was sanded and polished, then coated with silver and sometimes silver chloride. Once completed, the alternating current (AC) root-mean-square (rms) potential was measured between two adjacent, individual electrodes. Polarization testing was conducted according to a previously reported protocol (Witkowski FX and Penkoske PA. J Electrocardiol 21: 273-282, 1988). Activation mapping was conducted in the open-chest guinea pig with both pacing- and defibrillation- strength stimuli. In terms of results, four PVC and three FPC arrays were constructed, ranging from 4 to 400 electrodes. Two hours of labor were needed to create a complete electrode array, independent of the number of electrodes, including connectors and silver/silver chloride coating. As expected, the addition of a silver/silver chloride coating significantly reduced (0.76-0.42 mV, P < 0.001) the AC rms potential difference between two electrodes. A nearly immediate recovery of the potential difference between adjacent pairs of silver/silver chloride electrodes was observed after defibrillation stimuli.

Full Text

Duke Authors

Cited Authors

  • Malkin, RA; Pendley, BD

Published Date

  • July 2000

Published In

Volume / Issue

  • 279 / 1

Start / End Page

  • H437 - H442

PubMed ID

  • 10899084

Pubmed Central ID

  • 10899084

Electronic International Standard Serial Number (EISSN)

  • 1522-1539

International Standard Serial Number (ISSN)

  • 0363-6135

Digital Object Identifier (DOI)

  • 10.1152/ajpheart.2000.279.1.h437

Language

  • eng