Cellular and functional defects in a mouse model of heart failure


Journal Article

Heart failure and dilated cardiomyopathy develop in mice that lack the muscle LIM protein (MLP) gene (MLP(-/-)). The character and extent of the heart failure that occurs in MLP(-/-) mice were investigated using echocardiography and in vivo pressure-volume (P-V) loop measurements. P-V loop data were obtained with a new method for mice (sonomicrometry) using two pairs of orthogonal piezoelectric crystals implanted in the endocardial wall. Sonomicrometry revealed right-shifted P-V loops in MLP(-/-) mice, depressed systolic contractility, and additional evidence of heart failure. Cellular changes in MLP(-/-) mice were examined in isolated single cells using patch-clamp and confocal Ca2+ concentration ([Ca2+]) imaging techniques. This cellular investigation revealed unchanged Ca2+ currents and Ca2+ spark characteristics but decreased intracellular [Ca2+] transients and contractile responses and a defect in excitation-contraction coupling. Normal cellular and whole heart function was restored in MLP(-/-) mice that express a cardiac-targeted transgene, which blocks the function of β-adrenergic receptor (β-AR) kinase-1 (βARK1). These data suggest that, despite the persistent stimulus to develop heart failure in MLP(-/-) mice (i.e., loss of the structural protein MLP), downregulation and desensitization of the β-ARs may play a pivotal role in the pathogenesis. Furthermore, this work suggests that the inhibition of βARK1 action may prove an effective therapy for heart failure.

Duke Authors

Cited Authors

  • Esposito, G; Santana, LF; Dilly, K; Dos Santos Cruz, J; Mao, L; Lederer, WJ; Rockman, HA

Published Date

  • December 1, 2000

Published In

Volume / Issue

  • 279 / 6 48-6

International Standard Serial Number (ISSN)

  • 0363-6135

Citation Source

  • Scopus