Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast.

Journal Article (Journal Article)

Several quantitative trait loci (QTL) mapping strategies can successfully identify major-effect loci, but often have poor success detecting loci with minor effects, potentially due to the confounding effects of major loci, epistasis, and limited sample sizes. To overcome such difficulties, we used a targeted backcross mapping strategy that genetically eliminated the effect of a previously identified major QTL underlying high-temperature growth (Htg) in yeast. This strategy facilitated the mapping of three novel QTL contributing to Htg of a clinically derived yeast strain. One QTL, which is linked to the previously identified major-effect QTL, was dissected, and NCS2 was identified as the causative gene. The interaction of the NCS2 QTL with the first major-effect QTL was background dependent, revealing a complex QTL architecture spanning these two linked loci. Such complex architecture suggests that more genes than can be predicted are likely to contribute to quantitative traits. The targeted backcrossing approach overcomes the difficulties posed by sample size, genetic linkage, and epistatic effects and facilitates identification of additional alleles with smaller contributions to complex traits.

Full Text

Duke Authors

Cited Authors

  • Sinha, H; David, L; Pascon, RC; Clauder-Münster, S; Krishnakumar, S; Nguyen, M; Shi, G; Dean, J; Davis, RW; Oefner, PJ; McCusker, JH; Steinmetz, LM

Published Date

  • November 2008

Published In

Volume / Issue

  • 180 / 3

Start / End Page

  • 1661 - 1670

PubMed ID

  • 18780730

Pubmed Central ID

  • PMC2581965

International Standard Serial Number (ISSN)

  • 0016-6731

Digital Object Identifier (DOI)

  • 10.1534/genetics.108.092932


  • eng

Conference Location

  • United States