Inhibition of muscarinic-coupled phosphoinositide hydrolysis by N-methyl-D-aspartate is dependent on depolarization via channel activation.

Journal Article (Journal Article)

The intent of this work was to elucidate the mechanism by which N-methyl-D-aspartate (NMDA) receptor agonists inhibit a second messenger system, namely, the stimulation of phosphoinositide (PI) hydrolysis activated by muscarinic cholinergic receptor agonists. NMDA inhibited cholinergic stimulation of PI hydrolysis in a dose- and time-dependent manner. NMDA exerts this effect indirectly through channel activation, because both MK-801 and N-[1-(2-thienyl)cyclohexyl]piperidine (TCP) prevented this action. Prevention of the NMDA effect by removal of sodium, but not calcium, from the incubation buffer suggested that depolarization may be the responsible mechanism. Depolarization alone proved sufficient to inhibit cholinergic activation of PI hydrolysis, because both veratridine and an elevated extracellular potassium level inhibited cholinergic stimulation of PI hydrolysis. The effect of NMDA appeared to require sodium flux through NMDA channels rather than through voltage-dependent sodium channels, because tetrodotoxin failed to inhibit the effect of NMDA. In correlative electrophysiologic experiments, NMDA profoundly inhibited evoked excitatory postsynaptic potentials and population action potentials of CA1 neurons, an effect almost certainly due to depolarization. The dose and time course of the electrophysiologic effects correlated well with the biochemical effects. Taken together, the data support the assertion that NMDA receptor activation inhibits PI hydrolysis by depolarization mediated by sodium flux through NMDA channels.

Full Text

Duke Authors

Cited Authors

  • Morrisett, RA; Chow, CC; Sakaguchi, T; Shin, C; McNamara, JO

Published Date

  • May 1990

Published In

Volume / Issue

  • 54 / 5

Start / End Page

  • 1517 - 1525

PubMed ID

  • 1691275

International Standard Serial Number (ISSN)

  • 0022-3042

Digital Object Identifier (DOI)

  • 10.1111/j.1471-4159.1990.tb01199.x


  • eng

Conference Location

  • England