Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning.

Published

Journal Article

Behavioural learning depends on the brain's capacity to respond to instructive experience and is often enhanced during a juvenile sensitive period. How instructive experience acts on the juvenile brain to trigger behavioural learning remains unknown. In vitro studies show that forms of synaptic strengthening thought to underlie learning are accompanied by an increase in the stability, number and size of dendritic spines, which are the major sites of excitatory synaptic transmission in the vertebrate brain. In vivo imaging studies in sensory cortical regions reveal that these structural features can be affected by disrupting sensory experience and that spine turnover increases during sensitive periods for sensory map formation. These observations support two hypotheses: first, the increased capacity for behavioural learning during a sensitive period is associated with enhanced spine dynamics on sensorimotor neurons important for the learned behaviour; second, instructive experience rapidly stabilizes and strengthens these dynamic spines. Here we report a test of these hypotheses using two-photon in vivo imaging to measure spine dynamics in zebra finches, which learn to sing by imitating a tutor song during a juvenile sensitive period. Spine dynamics were measured in the forebrain nucleus HVC, the proximal site where auditory information merges with an explicit song motor representation, immediately before and after juvenile finches first experienced tutor song. Higher levels of spine turnover before tutoring correlated with a greater capacity for subsequent song imitation. In juveniles with high levels of spine turnover, hearing a tutor song led to the rapid ( approximately 24-h) stabilization, accumulation and enlargement of dendritic spines in HVC. Moreover, in vivo intracellular recordings made immediately before and after the first day of tutoring revealed robust enhancement of synaptic activity in HVC. These findings suggest that behavioural learning results when instructive experience is able to rapidly stabilize and strengthen synapses on sensorimotor neurons important for the control of the learned behaviour.

Full Text

Duke Authors

Cited Authors

  • Roberts, TF; Tschida, KA; Klein, ME; Mooney, R

Published Date

  • February 2010

Published In

Volume / Issue

  • 463 / 7283

Start / End Page

  • 948 - 952

PubMed ID

  • 20164928

Pubmed Central ID

  • 20164928

Electronic International Standard Serial Number (EISSN)

  • 1476-4687

International Standard Serial Number (ISSN)

  • 0028-0836

Digital Object Identifier (DOI)

  • 10.1038/nature08759

Language

  • eng