Chern-Simons number diffusion with hard thermal loops

Published

Journal Article

We construct an extension of the standard Kogut-Susskind lattice model for classical [Formula Presented]-dimensional Yang-Mills theory, in which “classical particle” degrees of freedom are added. We argue that this will correctly reproduce the “hard thermal loop” effects of hard degrees of freedom, while giving a local implementation which is numerically tractable. We prove that the extended system is Hamiltonian and has the same thermodynamics as dimensionally reduced hot Yang-Mills theory put on a lattice. We present a numerical update algorithm and study the Abelian theory to verify that the classical gauge theory self-energy is correctly modified. Then we use the extended system to study the diffusion constant for the Chern-Simons number. We verify the Arnold-Son-Yaffe picture that the diffusion constant is inversely proportional to the hard thermal loop strength. Our numbers correspond to a diffusion constant of [Formula Presented] for [Formula Presented]. © 1998 The American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Moore, GD; Hu, C; Müller, B

Published Date

  • January 1, 1998

Published In

Volume / Issue

  • 58 / 4

Electronic International Standard Serial Number (EISSN)

  • 1550-2368

International Standard Serial Number (ISSN)

  • 1550-7998

Digital Object Identifier (DOI)

  • 10.1103/PhysRevD.58.045001

Citation Source

  • Scopus