The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis.

Published

Journal Article

Testicular mitochondria were previously shown to contain an abundance of peripheral-type benzodiazepine recognition site(s)/receptor(s) (PBR). We have previously purified, cloned, and expressed an Mr 18,000 PBR protein (Antkiewicz-Michaluk, Mukhin, A. G., Guidotti, A., and Krueger, K. E. (1988) J. Biol. Chem. 263, 17317-17321; (Sprengel, R., Werner, P., Seeburg, P. H., Mukhin, A. G., Santi, M. R., Grayson, D. R., Guidotti, A., and Krueger, K. E. (1989) J. Biol. Chem. 264, 20415-20421); and in this report, we present evidence that PBR are functionally linked to Leydig cell steroid biosynthesis. A spectrum of nine different ligands covering a range of over 4 orders of magnitude in their affinities for PBR were tested for their potencies to modulate steroidogenesis in the MA-10 mouse Leydig tumor cell line. The Ki for inhibition of [3H]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide binding and the EC50 for steroid biosynthesis for this series of compounds showed a correlation coefficient of r = 0.95. The most potent ligands stimulated steroid production by approximately 4-fold in these cells. This stimulation was not inhibited by cycloheximide, unlike human chorionic gonadotropin- or cyclic AMP-activated steroidogenesis. The action of PBR ligands was not additive to stimulation by human chorionic gonadotropin or cyclic AMP, but was additive to that of epidermal growth factor, another regulator of MA-10 Leydig cell steroidogenesis. Moreover, PBR ligands stimulated, in a dose-dependent manner, pregnenolone biosynthesis by isolated mitochondria when supplied with exogenous cholesterol. This effect was not observed with mitoplasts (mitochondria devoid of the outer membrane). Cytochrome P-450 side chain cleavage activity, as measured by metabolism of (22R)-hydroxycholesterol, was not affected by PBR ligands in intact cells. Similar results were also obtained with purified rat Leydig cells. In conclusion, PBR are implicated in the acute stimulation of Leydig cell steroidogenesis possibly by mediating the entry, distribution, and/or availability of cholesterol within mitochondria.

Full Text

Duke Authors

Cited Authors

  • Papadopoulos, V; Mukhin, AG; Costa, E; Krueger, KE

Published Date

  • March 5, 1990

Published In

Volume / Issue

  • 265 / 7

Start / End Page

  • 3772 - 3779

PubMed ID

  • 2154488

Pubmed Central ID

  • 2154488

International Standard Serial Number (ISSN)

  • 0021-9258

Language

  • eng

Conference Location

  • United States