Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae.

Journal Article (Journal Article)

Oxidative DNA damage is likely to be involved in the etiology of cancer and is thought to accelerate tumorigenesis via increased mutation rates. However, the majority of malignant cells acquire a specific type of genomic instability characterized by large-scale genomic rearrangements, referred to as chromosomal instability (CIN). The molecular mechanisms underlying CIN are not entirely understood. We utilized Saccharomyces cerevisiae as a model system to delineate the relationship between genotoxic stress and CIN. It was found that elevated levels of chronic, unrepaired oxidative DNA damage caused chromosomal aberrations at remarkably high frequencies under both selective and nonselective growth conditions. In this system, exceeding the cellular capacity to appropriately manage oxidative DNA damage resulted in a "gain-of-CIN" phenotype and led to profound karyotypic instability. These results illustrate a novel mechanism for genome destabilization that is likely to be relevant to human carcinogenesis.

Full Text

Duke Authors

Cited Authors

  • Degtyareva, NP; Chen, L; Mieczkowski, P; Petes, TD; Doetsch, PW

Published Date

  • September 2008

Published In

Volume / Issue

  • 28 / 17

Start / End Page

  • 5432 - 5445

PubMed ID

  • 18591251

Pubmed Central ID

  • PMC2519736

Electronic International Standard Serial Number (EISSN)

  • 1098-5549

Digital Object Identifier (DOI)

  • 10.1128/MCB.00307-08


  • eng

Conference Location

  • United States