Specialized vascularization of the primate visual cortex.

Published

Journal Article

We have analyzed blood vessel distribution in the primary and secondary visual cortices of the squirrel monkey in relation to cortical modules, laminae, and cytoarchitectonic areas. Measurements of microvessel length in tangential sections through the primary visual cortex showed that blobs are more richly vascularized than intervening cortical regions. Thus, the mean total length of microvessel profiles per unit was 42% greater within these cortical modules than within adjacent (interblob) areas. Total microvessel length per unit area in another class of module, the stripes in the secondary visual cortex, was 27% greater than in interstripe regions. Microvessel distribution also varied systematically from layer to layer in the primary visual cortex, being greatest in lamina IVc. Finally, the overall microvessel length per unit area in sections of the primary visual cortex was 26% greater than that in the secondary visual cortex. These observations indicate that the modular, laminar, and regional organization of the primate visual cortex is reflected in the underlying distribution of cortical microvessels. These vascular patterns should be discernable in living animals with vascular contrast agents and appropriate imaging techniques.

Full Text

Duke Authors

Cited Authors

  • Zheng, D; LaMantia, AS; Purves, D

Published Date

  • August 1991

Published In

Volume / Issue

  • 11 / 8

Start / End Page

  • 2622 - 2629

PubMed ID

  • 1714496

Pubmed Central ID

  • 1714496

Electronic International Standard Serial Number (EISSN)

  • 1529-2401

International Standard Serial Number (ISSN)

  • 0270-6474

Digital Object Identifier (DOI)

  • 10.1523/jneurosci.11-08-02622.1991

Language

  • eng