Novel molecular insights into RhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork.

Journal Article (Journal Article)

Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells.

Full Text

Duke Authors

Cited Authors

  • Zhang, M; Maddala, R; Rao, PV

Published Date

  • November 2008

Published In

Volume / Issue

  • 295 / 5

Start / End Page

  • C1057 - C1070

PubMed ID

  • 18799648

Pubmed Central ID

  • PMC2584993

International Standard Serial Number (ISSN)

  • 0363-6143

Digital Object Identifier (DOI)

  • 10.1152/ajpcell.00481.2007


  • eng

Conference Location

  • United States