Rho GDP dissociation inhibitor-mediated disruption of Rho GTPase activity impairs lens fiber cell migration, elongation and survival.

Published

Journal Article

To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (Rho GDI alpha), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of delta-crystallin enhancer and alpha A-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine Rho GDI alpha disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the Rho GDI alpha Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.

Full Text

Duke Authors

Cited Authors

  • Maddala, R; Reneker, LW; Pendurthi, B; Rao, PV

Published Date

  • March 2008

Published In

Volume / Issue

  • 315 / 1

Start / End Page

  • 217 - 231

PubMed ID

  • 18234179

Pubmed Central ID

  • 18234179

Electronic International Standard Serial Number (EISSN)

  • 1095-564X

International Standard Serial Number (ISSN)

  • 0012-1606

Digital Object Identifier (DOI)

  • 10.1016/j.ydbio.2007.12.039

Language

  • eng