Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae.

Published

Journal Article

DNA polymerase slippage occurs frequently in tracts of a tandemly repeated nucleotide, and such slippage events can be genetically detected as frameshift mutations. In long mononucleotide runs, most frameshift intermediates are repaired by the postreplicative mismatch repair (MMR) machinery, rather than by the exonucleolytic proofreading activity of DNA polymerase. Although mononucleotide runs are hotspots for polymerase slippage events, it is not known whether the composition of a run and the surrounding context affect the frequency of slippage or the efficiency of MMR. To address these issues, 10-nucleotide (10N) runs were inserted into the yeast LYS2 gene to create +1 frameshift alleles. Slippage events within these runs were detected as Lys(+) revertants. 10G or 10C runs were found to be more unstable than 10A or 10T runs, but neither the frequency of polymerase slippage nor the overall efficiency of MMR was greatly influenced by sequence context. Although complete elimination of MMR activity (msh2 mutants) affected all runs similarly, analyses of reversion rates in msh3 and msh6 mutants revealed distinct specificities of the yeast Msh2p-Msh3p and Msh2p-Msh6p mismatch binding complexes in the repair of frameshift intermediates in different sequence contexts.

Full Text

Duke Authors

Cited Authors

  • Harfe, BD; Jinks-Robertson, S

Published Date

  • October 2000

Published In

Volume / Issue

  • 156 / 2

Start / End Page

  • 571 - 578

PubMed ID

  • 11014807

Pubmed Central ID

  • 11014807

International Standard Serial Number (ISSN)

  • 0016-6731

Language

  • eng

Conference Location

  • United States