A contrast-detail comparison of computed mammotomography and digital mammography


Journal Article

We use a contrast-detail observer study to compare performance of a novel 3D computed mammotomography (CmT) system with a commercially developed full-field digital mammography (FFDM) system. A contrast-detail phantom comprised of uniform acrylic spheres of various diameters was developed and placed in a variety of mediums including uniform water (simulating low contrast lesions within a uniform background), water and acrylic yarn (simulating low contrast lesions with over/under-lying structure), oil only (simulating higher contrast lesions in a uniform background), and oil and acrylic yarn (simulating higher contrast lesions with over/under-lying structure). For CmT, the phantom was placed in a 14.6 cm diameter uncompressed breast phantom and projections acquired using a simple circular orbit, W-target tube, 60 kVp tube potential, 0.05 cm Ce filtration, 4 mAs per projection, and a CsI(Tl) digital x-ray detector. Reconstructions used an iterative OSTR algorithm. For FFDM, the phantom was placed in a 5.3-cm-thick compressed breast phantom. Single CC-view mammograms were acquired using a clinical W-target tube with 50 um Rh filtration, 28 kVp, photo-timed mAs per our clinical mammography operation, and a Selenium-based flat-panel detector (Mammomat Novation, Siemens). Six observers evaluated the images in terms of the number of detectable spheres. FFDM performed significantly better for the low contrast lesions in uniform water background (p<0.05). However, CmT performed significantly better for all other cases (p<0.05). Results indicate that CmT shows significant advantage in soft tissue detection over FFDM in otherwise low contrast dense breasts.

Full Text

Duke Authors

Cited Authors

  • McKinley, RL; Tornai, MP; Floyd, CE; Samei, E

Published Date

  • October 16, 2007

Published In

Volume / Issue

  • 6510 / PART 1

International Standard Serial Number (ISSN)

  • 1605-7422

Digital Object Identifier (DOI)

  • 10.1117/12.713032

Citation Source

  • Scopus