Skip to main content

Optimal display processing for digital radiography

Publication ,  Journal Article
Flynn, M; Couwenhoven, M; Eyler, W; Whiting, B; Samei, E; Foos, D; Slone, R; Marom, E
Published in: Proceedings of SPIE - The International Society for Optical Engineering
January 1, 2001

Display processing is used to transform digital radiography raw data in log-signal units to display values for presentation using a workstation or film printer. Radiographic appearance with respect to subject latitude and detail contrast varies significantly depending on the signal equalization and grayscale rendition used for processing. A human observer study was conducted to define the latitude and detail contrast that is judged optimal for a broad spectrum of chest radiographs. Raw data for 12 chest radiographs acquired with storage phosphor digital radiography systems were transformed using 52 different combinations of latitude and detail contrast. For specific latitude values, contrast was adjusted by varying the equalization gain. Three radiologists at three different medical centers evaluated the images. Each image was compared to a reference image using a calibrated display on a computer workstation. For PA views, processing that produced a detail contrast of 3.14 (ΔD/ΔlogE) and latitude of 1.47 (ΔlogE for ΔD = 1.75) was determined to be best for all cases and was achieved with an equalization gain of 2.64. For lateral views, a detail contrast of 3.42 and latitude of 1.17 was best for all cases (gain = 2.29). For individual cases, the preferred processing varied from the global average primarily with respect to latitude.

Duke Scholars

Published In

Proceedings of SPIE - The International Society for Optical Engineering

DOI

ISSN

0277-786X

Publication Date

January 1, 2001

Volume

4319

Start / End Page

298 / 305

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Flynn, M., Couwenhoven, M., Eyler, W., Whiting, B., Samei, E., Foos, D., … Marom, E. (2001). Optimal display processing for digital radiography. Proceedings of SPIE - The International Society for Optical Engineering, 4319, 298–305. https://doi.org/10.1117/12.428068
Flynn, M., M. Couwenhoven, W. Eyler, B. Whiting, E. Samei, D. Foos, R. Slone, and E. Marom. “Optimal display processing for digital radiography.” Proceedings of SPIE - The International Society for Optical Engineering 4319 (January 1, 2001): 298–305. https://doi.org/10.1117/12.428068.
Flynn M, Couwenhoven M, Eyler W, Whiting B, Samei E, Foos D, et al. Optimal display processing for digital radiography. Proceedings of SPIE - The International Society for Optical Engineering. 2001 Jan 1;4319:298–305.
Flynn, M., et al. “Optimal display processing for digital radiography.” Proceedings of SPIE - The International Society for Optical Engineering, vol. 4319, Jan. 2001, pp. 298–305. Scopus, doi:10.1117/12.428068.
Flynn M, Couwenhoven M, Eyler W, Whiting B, Samei E, Foos D, Slone R, Marom E. Optimal display processing for digital radiography. Proceedings of SPIE - The International Society for Optical Engineering. 2001 Jan 1;4319:298–305.

Published In

Proceedings of SPIE - The International Society for Optical Engineering

DOI

ISSN

0277-786X

Publication Date

January 1, 2001

Volume

4319

Start / End Page

298 / 305

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering