Mechanistic analysis of the Saccharomyces cerevisiae kinesin Kar3.


Journal Article

Kar3 is a minus-end-directed microtubule motor that is implicated in meiotic and mitotic spindle function in Saccharomyces cerevisiae. To date, the only truncated protein of Kar3 that has been reported to promote unidirectional movement in vitro is GSTKar3. This motor contains an NH2-terminal glutathione S-transferase (GST) tag followed by the Kar3 sequence that is predicted to form an extended alpha-helical coiled-coil. The alpha-helical domain leads into the neck linker and COOH-terminal motor domain. Kar3 does not homodimerize with itself but forms a heterodimer with either Cik1 or Vik1, both of which are non-motor polypeptides. We evaluated the microtubule-GSTKar3 complex in comparison to the microtubule-Kar3 motor domain complex to determine the distinctive mechanistic features required for GSTKar3 motility. Our results indicate that ATP binding was significantly faster for GSTKar3 than that observed previously for the Kar3 motor domain. In addition, microtubule-activated ADP release resulted in an intermediate that bound ADP weakly in contrast to the Kar3 motor domain, suggesting that after ADP release, the microtubule-GSTKar3 motor binds ATP in preference to ADP. The kinetics also showed that GST-Kar3 readily detached from the microtubule rather than remaining bound for multiple ATP turnovers. These results indicate that the extended alpha-helical domain NH2-terminal to the catalytic core provides the structural transitions in response to the ATPase cycle that are critical for motility and that dimerization is not specifically required. This study provides the foundation to define the mechanistic contributions of Cik1 and Vik1 for Kar3 force generation and function in vivo.

Full Text

Duke Authors

Cited Authors

  • Mackey, AT; Sproul, LR; Sontag, CA; Satterwhite, LL; Correia, JJ; Gilbert, SP

Published Date

  • December 2004

Published In

Volume / Issue

  • 279 / 49

Start / End Page

  • 51354 - 51361

PubMed ID

  • 15385545

Pubmed Central ID

  • 15385545

Electronic International Standard Serial Number (EISSN)

  • 1083-351X

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.M406268200


  • eng