Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates.

Published

Journal Article

The forelimb joints of terrestrial primate quadrupeds appear better able to resist mediolateral (ML) shear forces than those of arboreal quadrupedal monkeys. These differences in forelimb morphology have been used extensively to infer locomotor behavior in extinct primate quadrupeds. However, the nature of ML substrate reaction forces (SRF) during arboreal and terrestrial quadrupedalism in primates is not known. This study documents ML-SRF magnitude and orientation and forelimb joint angles in six quadrupedal anthropoid species walking across a force platform attached to terrestrial (wooden runway) and arboreal supports (raised horizontal poles). On the ground all subjects applied a lateral force in more than 50% of the steps collected. On horizontal poles, in contrast, all subjects applied a medially directed force to the substrate in more than 75% of the steps collected. In addition, all subjects on arboreal supports combined a lower magnitude peak ML-SRF with a change in the timing of the ML-SRF peak force. As a result, during quadrupedalism on the poles the overall SRF resultant was relatively lower than it was on the runway. Most subjects in this study adduct their humerus while on the poles. The kinetic and kinematic variables combine to minimize the tendency to collapse or translate forelimbs joints in an ML plane in primarily arboreal quadrupedal primates compared to primarily terrestrial quadrupedal ones. These data allow for a more complete understanding of the anatomy of the forelimb in terrestrial vs. arboreal quadrupedal primates. A better understanding of the mechanical basis of morphological differences allows greater confidence in inferences concerning the locomotion of extinct primate quadrupeds.

Full Text

Duke Authors

Cited Authors

  • Schmitt, D

Published Date

  • January 2003

Published In

Volume / Issue

  • 44 / 1

Start / End Page

  • 47 - 58

PubMed ID

  • 12604303

Pubmed Central ID

  • 12604303

Electronic International Standard Serial Number (EISSN)

  • 1095-8606

International Standard Serial Number (ISSN)

  • 0047-2484

Digital Object Identifier (DOI)

  • 10.1016/s0047-2484(02)00165-3

Language

  • eng