Magnetic superlens-enhanced inductive coupling for wireless power transfer


Journal Article

We investigate numerically the use of a negative-permeability perfect lens for enhancing wireless power transfer between two current carrying coils. The negative permeability slab serves to focus the flux generated in the source coil to the receiver coil, thereby increasing the mutual inductive coupling between the coils. The numerical model is compared with an analytical theory that treats the coils as point dipoles separated by an infinite planar layer of magnetic material Urzhumov, Phys. Rev. B 19, 8312 (2011). In the limit of vanishingly small radius of the coils, and large width of the metamaterial slab, the numerical simulations are in excellent agreement with the analytical model. Both the idealized analytical and realistic numerical models predict similar trends with respect to metamaterial loss and anisotropy. Applying the numerical models, we further analyze the impact of finite coil size and finite width of the slab. We find that, even for these less idealized geometries, the presence of the magnetic slab greatly enhances the coupling between the two coils, including cases where significant loss is present in the slab. We therefore conclude that the integration of a metamaterial slab into a wireless power transfer system holds promise for increasing the overall system performance. © 2012 American Institute of Physics.

Full Text

Duke Authors

Cited Authors

  • Huang, D; Urzhumov, Y; Smith, DR; Hoo Teo, K; Zhang, J

Published Date

  • March 15, 2012

Published In

Volume / Issue

  • 111 / 6

International Standard Serial Number (ISSN)

  • 0021-8979

Digital Object Identifier (DOI)

  • 10.1063/1.3692757

Citation Source

  • Scopus