Chemoattractant receptors activate distinct pathways for chemotaxis and secretion. Role of G-protein usage.

Published

Journal Article

Human leukocyte chemoattractant receptors activate chemotactic and cytotoxic pathways to varying degrees and also activate different G-proteins depending on the receptor and the cell-type. To determine the relationship between G-protein usage and the biological and biochemical responses activated, receptors for the chemoattractants formyl peptides (FR), platelet-activating factor (PAFR), and leukotriene B(4) (BLTR) were transfected into RBL-2H3 cells. Pertussis toxin (Ptx) served as a Galpha(i) inhibitor. These receptors were chosen to represent the spectrum of G(i) usage as Ptx had differential effects on their ability to induce calcium mobilization, phosphoinositide hydrolysis, and exocytosis with complete inhibition of all responses by FR, intermediate effects on BLTR, and little effect on PAFR. Ptx did not affect ligand-induced phosphorylation of PAFR and BLTR but inhibited phosphorylation of FR. In contrast, chemotaxis to formylmethionylleucylphenylalanine, leukotriene B(4), and platelet-activating factor was completely blocked by Ptx. Wortmannin, a phosphotidylinositol 3-kinase inhibitor, also completely blocked ligand-induced chemotaxis by all receptors but did not affect calcium mobilization or phosphoinositide hydrolysis; however, it partially blocked the exocytosis response to formylmethionylleucylphenylalanine and the platelet-activating factor. Membrane ruffling and pseudopod extension via the BLTR was also completely inhibited by both Ptx and wortmannin. These data suggest that of the chemoattractant receptors studied, G-protein usage varies with FR being totally dependent on G(i), whereas BLTR and PAFR utilize both G(i) and a Ptx-insensitive G-protein. Both Ptx-sensitive and -insensitive G-protein usage can mediate the activation of phospholipase C, mobilization of intracellular calcium, and exocytosis by chemoattractant receptors. Chemotaxis, however, had an absolute requirement for a G(i)-mediated pathway.

Full Text

Duke Authors

Cited Authors

  • Haribabu, B; Zhelev, DV; Pridgen, BC; Richardson, RM; Ali, H; Snyderman, R

Published Date

  • December 24, 1999

Published In

Volume / Issue

  • 274 / 52

Start / End Page

  • 37087 - 37092

PubMed ID

  • 10601267

Pubmed Central ID

  • 10601267

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.274.52.37087

Language

  • eng

Conference Location

  • United States